viernes, 3 de octubre de 2014

Un “material cuántico” para crear transistores más pequeños de lo que permite la física del silicio

Aunque los fabricantes de dispositivos electrónicos continúan añadiendo más velocidad y funcionalidad en equipos cada vez más pequeños, el rendimiento de los componentes basados en el silicio se topará pronto contra un muro. Los transistores de silicio tradicionales tienen limitaciones fundamentales de miniaturización. Estas válvulas que al ser abiertas o cerradas controlan el flujo de electrones en un circuito no pueden simplemente seguir reduciendo su tamaño para ajustarse a las necesidades de dispositivos cada vez más potentes y a la vez más compactos; las limitaciones físicas como el consumo energético y la disipación del calor son demasiado notables. Si los empequeñecemos más allá de cierto tamaño mínimo, dejarán de funcionar adecuadamente.

Hasta ahora, no ha habido alternativas atractivas al silicio para los transistores. La situación puede que comience a cambiar ahora, gracias a un logro alcanzado por científicos de la Escuela de Ingeniería y Ciencias Aplicadas (SEAS) perteneciente a la Universidad Harvard, y que tiene su sede en Boston, Massachusetts, Estados Unidos.

Usando un óxido correlacionado, concretamente niquelato de samario, el equipo de Shriram Ramanathan ha conseguido un cambio reversible en la resistencia eléctrica de ocho órdenes de magnitud, un resultado que los científicos califican de “colosal”. En pocas palabras, han diseñado este material para que actúe de manera comparable con los mejores conmutadores de silicio.

A diferencia de este último, el niquelato de samario y otros óxidos correlacionados son materiales cuánticos, lo que significa que las interacciones mecánico-cuánticas tienen una influencia dominante sobre las propiedades del material, y no solo a escalas muy pequeñas. Eso da a estos materiales una serie de cualidades especiales que podrían conducir, en el marco adecuado, a dispositivos electrónicos más miniaturizados que lo máximo posible con el silicio.

Dado que los óxidos correlacionados pueden funcionar igual de bien a temperatura ambiente que a unos pocos cientos de grados por encima de ella, sería fácil integrarlos en los actuales dispositivos electrónicos y métodos de fabricación. Por tanto, el avance logrado por el equipo de Ramanathan establece firmemente a los óxidos correlacionados como semiconductores prometedores para futuros circuitos integrados tridimensionales (con arquitectura eléctrica no limitada a las típicas placas de circuitos), así como para dispositivos fotónicos ajustables y adaptativos.

Fuente: http://noticiasdelaciencia.com/not/11491/un-ldquo-material-cuantico-rdquo-para-crear-transistores-mas-pequenos-de-lo-que-permite-la-fisica-del-silicio/

No hay comentarios:

Publicar un comentario